Global localization using distinctive visual features
نویسندگان
چکیده
We have previously developed a mobile robot system which uses scale invariant visual landmarks to localize and simultaneously build a 3D map of the environment In this paper, we look at global localization, also known as the kidnapped robot problem, where the robot localizes itself globally, without any prior location estimate. This is achieved by matching distinctive landmarks in the current frame to a database map. A Hough Transform approach and a RANSAC approach for global localization are compared, showing that RANSAC is much more efficient. Moreover, robust global localization can be achieved by matching a small sub-map of the local region built from multiple frames.
منابع مشابه
A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کاملA Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کاملMobile robot self-localization based on global visual appearance features
This paper presents a novel method for mobile robot localization using visual appearance features. A multidimensional-histogram is used to describe the global appearance features of an image such as colors, edge density, gradient magnitude, textures and so on. The matching of histograms determines the location of the robot. The method has been evaluated in an indoor environment, and the system ...
متن کاملHaar invariant signatures and spatial recognition using omnidirectional visual information only
This paper describes a method for spatial representation, place recognition and qualitative self-localization in dynamic indoor environments, based on omnidirectional images. This is a difficult problem because of the perceptual ambiguity of the acquired images, and their weak robustness to noise, geometrical and photometric variations of real world scenes. The spatial representation is built u...
متن کاملMap-merging in Multi-robot Simultaneous Localization and Mapping Process Using Two Heterogeneous Ground Robots
In this article, a fast and reliable map-merging algorithm is proposed to produce a global two dimensional map of an indoor environment in a multi-robot simultaneous localization and mapping (SLAM) process. In SLAM process, to find its way in this environment, a robot should be able to determine its position relative to a map formed from its observations. To solve this complex problem, simultan...
متن کامل